US009459894B2

a2 United States Patent

Bobroff et al.

US 9,459,894 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

ACTIVE CONTROL OF MEMORY FOR JAVA
VIRTUAL MACHINES AND OTHER
APPLICATION RUNTIME ENVIRONMENTS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Norman Bobroff, Katonah, NY (US);
Liana Liyow Fong, Irvington, NY
(US); Peter Hans Westernick,
Ossining, NY (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 9 days.

Appl. No.: 14/307,118

Filed: Jun. 17, 2014

Prior Publication Data

US 2015/0363133 Al Dec. 17, 2015

Int. CL.

GO6F 3/06 (2006.01)

GO6F 9/445 (2006.01)

GO6F 9/455 (2006.01)

GO6F 12/00 (2006.01)

U.S. CL

CPC ... GO6F 9/45529 (2013.01); GOGF 9/45504

(2013.01); GOGF 9/45558 (2013.01); GO6F
12/00 (2013.01); GOGF 2009/45583 (2013.01)

Field of Classification Search

CPC GOG6F 9/5077; GOGF 9/45558; GOGF
11/3442
USPC i 717/148

See application file for complete search history.

304 ‘
\l HvMconolierd 540

(56) References Cited

U.S. PATENT DOCUMENTS

5,880,902 A * 3/1999 Yuooooiieeninn G11B 5/5534
360/77.04
7,434,206 B2* 10/2008 Seidman GO6F 11/073
707/999.2
7,634,590 B2* 12/2009 Addleman HO04L 12/2602
707/999.101
9,063,668 B1* 6/2015 Jungcccccoeneee. GO6F 3/0658
2006/0230087 Al* 10/2006 Andreasson GOGF 12/0253
2010/0169536 Al* 7/2010 Shedel GO6F 9/45558
711/6
2011/0196968 Al1* 8/2011 Kobayashi GO6F 9/5077
709/226

(Continued)

OTHER PUBLICATIONS

“Calculus: the slope of a curve”;retreived from “http://www.math.
utah.edu/lectures/math 1210/7PostNotes.pdf”;*Jan. 15, 2013”; “6
pages”.*

(Continued)

Primary Examiner — Wei Zhen

Assistant Examiner — Brahim Bourzik

(74) Attorney, Agent, or Firm — Kevin Jordan, Esq.;
McGinn IP Law Group, PLLC

57 ABSTRACT

A method and structure for dynamic memory re-allocation
for an application runtime environment (ARE) includes
receiving, through an interface of an application runtime
environment (ARE), a first set of internal operational met-
rics of the ARE executing at a current setting S1 on a
processor of a computer. A first performance P1 of the ARE
is determined at the current setting S1 using the received first
set of internal operation metrics. The current setting S1 of
the ARE is varied to a new setting S2. A second set of
internal operational metrics of the ARE executing at the new
setting S2 is received through the interface of the ARE. A
second performance P2 of the ARE is determined at the new
setting S2, using the received second set of internal opera-

00

302

Warklnag! &

Dada
| Collector

-

306 —4_ 1zglay]

e 122158

sl £ 8 @ B A

= EQ"’%%)

‘ e g8 MaxHesp
8___—;‘1
>
308

Data
Coffector

Evaluate
Slaps
Compute Next
MaxbeapBize

US 9,459,894 B2
Page 2

tion metrics. A memory allocation for the ARE is re-
allocated, based on the determined performances P1 and P2.

7 Claims, 12 Drawing Sheets

US 9,459,894 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0271276 A1* 11/2011 Ashok GO6F 9/5077
718/1

2012/0137101 Al* 5/2012 Arcese GO6F 9/5016
711/170

2013/0282994 Al* 10/2013 Wirescccoevni. GOG6F 3/0604
711/158

2015/0378762 Al* 12/2015 Saladi GO6F 9/45558
718/1

OTHER PUBLICATIONS

Yang, T., Berger, E. D., Kaplan, S. F., and Moss, J. E. B. “CRAMM:
Virtual Memory Support for Garbage-Collected Applications.” 7
Symposium on Operating Systems Design and Implementation
(2006), OSDI ’06, USENIX Association, pp. 103-116.

Heo, J., Zhu, X., Padala, P, and Wang, A. “Memory Overbooking
and Dynamic Control of Xen Virtual Machines in Consolidated

Environments.” In Integrated Network Management, 2009. IM” 09.
IFIP/IEEE International Symposium on (2009), IEEE, pp. 630-637.
Hines, M. R., Gordon, A., Silva, M., da Silva, D., Ryu, K. D., and
Ben-Yehuda, M. “Applications Know Best: Performance-Driven
Memory Overcommit With Ginkgo.” In Cloud Computing Tech-
nology and Science (CloudCom), 2011 IEEE Third International
Conference on (2011), IEEE, pp. 130-137.

Salomie, T.-I., Alonso, G., Roscoe, T., and Elphinstone, K. “Appli-
cation Level Ballooning for Efficient Server Consolidation.” In
Proceedings of the 8" ACM European Conference on Computer
Systems (2013), EuroSys *13, AMC, pp. 337-350.

Zhao, W., and Wang, Z. “Dynamic Memory Balancing for Virtual
Machines.” In Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments
(2009), VEE *09, ACM, pp. 21-30.

Waldspurger, C. A. “Memory Resource Management in VMware
ESX Server.” In Proceedings of the 5% Symposium on Operating
Systems Design and Implementation. Dec. 2002, OSDI 02, ACM,
pp. 181-194.

* cited by examiner

US 9,459,894 B2

Sheet 1 of 12

Oct. 4, 2016

2

Ol

100d AHONWIIN dOSINGTdAH/NLHO41vY1d

U.S. Patent

d3dd < AHONWIN A3LvO0TIV
4//
GOl
901
__— /0l A
. s | 100d Alows SO .5 | lood Aowsi SO
o8N as °sn oSN
uj N ui
uj Ul
09. 5573 99.4 ool |
TWAP
, LINAL N) M INAP LINAT \
/ /
140)” N INAISeND €0l ¢0l L INAISBND Lot

e

Ol

U.S. Patent Oct. 4, 2016 Sheet 2 of 12 US 9,459,894 B2

-
, &
' L]
SRS
/ r&‘«:
w
g =2 20
opl-oo -
o £
8 (o
% N\N %3
Y | B
R A g\m,'wg XN%%” N
e | B S
s 8 °98 838 09
e Q ¢ O -
| | S W = LL.
(e/%)nco—=0D wondu
Yy -’
Q R
\ © =
< N N
s g Qg g ©°
= . g < LL
- 18dD3ds (/g)e1B-00]R
S

N

U.S. Patent Oct. 4, 2016 Sheet 3 of 12 US 9,459,894 B2

BENR
- Ajddy |

i wid [cee b= |

BIRM{EA

B

US 9,459,894 B2

Sheet 4 of 12

Oct. 4, 2016

U.S. Patent

48] 7%

{032,

Er:

G

ans Lt

QLR Py

LERAN ach oag

LY e anE

i

Jng

ENES ol B

]
e
-y ik

i

noEL

US 9,459,894 B2

Sheet 5 of 12

Oct. 4, 2016

U.S. Patent

QUG BE0 AT PRELNST

ggcl gl g9 FEE 4

0
i

Y«
o N

i

e
o
Ly

i
ooy
3
—

e RIOLLEE[Y

A BB BN pAlRLunST

gggl 5Ll ga. FEE 0
{ 1) L
: : N

i
i
i

b

=t
[one S o)
'ii oy

T

[B e
¢

2

() peiEany fowan

B #AUND PRELST

"

b PBE D

S

UG BB AMNT PAELINST
DUE 1145 gef 151 1]

1 1 I

P 3

e
%3

ColJ a7
e

O3y)
S
P

Lap]

i

(A xepdesy sa (] w_ s oy Anwa

SIS BB SAIND DEBLINST

Dag 0Td 8y 0¥z I
L 1] L

—t
Dume 3

e
EBL
REZ
i (”(JR— .. . et lmmmu
ﬁ: z%é A a; EE_;_?:;%:
PN S18(T AMND DRIELLIGET
0og 0gs a8t 0¥z 0
L 3 J X
,ﬁ : i {
95
T Rl
6aT
S xmzamms SATGIE pelean ﬁ.m,:._Emm__

Jrep, 50734

24¢'9l4

dagold

V& old

00

U.S. Patent Oct. 4, 2016 Sheet 6 of 12 US 9,459,894 B2

R

03 o

P ——)I.%
[Ira

I,

i
BE

5

3

FEV i ay g

IR R

i

4500

456

0.
7

1

U.S. Patent Oct. 4, 2016 Sheet 7 of 12 US 9,459,894 B2

-
o)

HER

T} 7

- E
...... . -
N N = TUETTTI U R i s, Y Lo
e P
»2‘:!";'\5-“:2‘.\1\(\‘.4‘1!\‘,!\ 3

70

A
Bt -
B0 |-

0%

sley 20(y

£
1900

)

0
FIG.7

US 9,459,894 B2

Sheet 8 of 12

Oct. 4, 2016

U.S. Patent

SN 218 BAIND DERELUNSH
L5} CSEL god Fat 8!
: 1 GE!l
. [a9t
48914 Lot
fanpy xemdeay s (gl parero)id Rntua Ies
SWH G PR S8y pAIBLLNST
[ES Y THLE 8ol PRE 0
L] £ [[
0

38914 __.—

{an) xepdesy sa (g pEEI0Y AI0LWUE

i
ISy
v
—

S
%

L0 I)
v o4

d
el

SO BIZE] 8AIND POELIST
£511 Raf ¥oE i

Pt g

m
(e

».Ma

: w o
£
ooz
LBE

Rl

h
i

Wit

xepidesy sk (@0} b

e

1B30{Ry AlDLUBH

Q03

RO &80

aAND PEIRUIRS]

[33205° gTL Gor Ok it
| : m m g
% |
TEB L
089l o
(Ew) xewdesy sa {gu) peaenolpy Molua)y =8¢
SHIOA BB BRIND PRIBILAER
088 &4 g8y 0+z {
i i £ i
i It
¥ 1 H
o

8’914

(g xemdeay sa (g pae

IS BT

1 ¥ [
i 05
L w I o T)
¢ <

Eryd
o0
v

g

ZOHy NoLUR

BAID PRIEWINST

V8 Ol

Das st gt) Ll
4] k. 1 1
| | ¢
| | T@
ﬂm“ L
i = S m REd
(o) xemdeay sh (g papRIGy Rowisn 58

AR, G007 R[N3

008

US 9,459,894 B2

Sheet 9 of 12

Oct. 4, 2016

U.S. Patent

NOILVZINILdO

6 Old
1STYTLNI 40 LOTdSY
ENCENINNETE
7R
906
706
SANTVA
d31L3dNVEVYd 1d0d3d

06

34V J1IVILNVLSNI

806

c06

US 9,459,894 B2

Sheet 10 of 12

Oct. 4, 2016

U.S. Patent

OT Ol

e e

K RETRE]

_J
7101

H3LLVOV YHSALN

P
070T |

[S)3aE N
0

MASI0

L~

N N
<ot 7¢Ot

[470)8

WRESAS

39O

7
7e0T

00T

Ny

JSale 0e0t1

\
8¢0T

~8T0T

NN
SHISSI0H:

f
9101

s sunaeen [~ CTOT

US 9,459,894 B2

Sheet 11 of 12

Oct. 4, 2016

U.S. Patent

US 9,459,894 B2

Sheet 12 of 12

Oct. 4, 2016

U.S. Patent

Wallilyng pee
Sunee|d VIS

¢t o1 00CT

z2y)og SENYOg R SEMRER
EABS TIARG

BeAleS LoiENEEy o () SHESE Anjmye

aeqEleg omgay SayoMay elew) ,m I o818 KEL_E%

O & @@ g_@% ozet
quEs wujeendly m3os adenig sy PHEEN .>
R, Ew e ey

[= s e e N % 2
e \\)

Licfjedrey
ez ey

US 9,459,894 B2

1

ACTIVE CONTROL OF MEMORY FOR JAVA
VIRTUAL MACHINES AND OTHER
APPLICATION RUNTIME ENVIRONMENTS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to a memory
management controller for applications such as virtual
machines. More specifically, a technique selectively shifts
physical memory size of each application runtime environ-
ment (ARE) to allow a performance of each currently-
operating application runtime environment to be calculated
using memory usage data reported from inside the applica-
tion runtime environment, and memory is then reallocated
so that all collocated application runtime environments have
the same relative performance slope, thereby providing a
mechanism that utilizes the total memory resource of the
system as fairly allocated among all the currently-operating
application runtime environments, based on current memory
needs.

2. Description of the Related Art

As is well-known in the art, a virtual machine (VM) is a
software implementation of a machine (e.g., a computer)
that executes programs like a physical machine. A hypervi-
sor or virtual machine monitor (VMM) creates and runs
virtual machines, including memory allocation for the VM,
and can be computer software, firmware, or hardware.

A computer on which a hypervisor is running one or more
virtual machines is defined as a “host machine”, and each
virtual machine is called a “guest machine”. The hypervisor
presents the guest operating systems with a virtual operating
platform and manages the execution of the guest operating
systems. Multiple instances of a variety of operating systems
may share the virtualized hardware resources

As an initial matter, although the present invention is
described in the environment of Java virtual machines
(JVMs), there are many other virtual machine environments,
so the methods described herein should not be considered as
being limited to this specific environment. Any virtual
machine or other application runtime environment that has
internal metrics available through an interface, such as
interface extensions, that can be sufficiently correlated with
current performance of that virtual machine operation would
potentially benefit from the method described by the present
application. Some possible non-limiting examples of other
runtimes are: V8 (Google’s JavaScript engine), Ruby,
Python, and C-sharp (Microsoft).

Perhaps even more significant, even though the exem-
plary embodiment described herein refers to JVMs, the
method and structure of the present invention is not even
constrained to constructs in a virtual environment. Rather,
the present invention is considered as directed to any “appli-
cation runtime environment” that has an interface that
permits the reporting of internal memory parameter values
of that environment to be reported externally. For purpose of
the present invention, an “application runtime environment™
is intended to refer to any process, as being executed on a
computer, for which dynamic memory allocation is provided
by a mechanism that is typically external to the environment
itself, although the present invention can be expanded to be
implemented in application runtime environments that inter-
nally provide memory allocation functions. Thus, a VM or
a JVM would be specific instances of application runtime
environments.

Thus, in addition to JVMs, the present invention, as
implemented as the exemplary embodiment described

20

30

35

40

45

65

2

herein, would also be directed to other types of virtual
machines, as well as other types of applications running on
a platform, or any other environment having memory allo-
cations during runtime, as long as the environment has an
interface that permits internal parameter values to be
reported outside that environment. For example, certain
containers such as Linux containers would be a non-limiting
example of such application runtime environments that
could potentially benefit from the techniques described in
the present invention.

However, returning to the exemplary example involving
JVMs, in recent years there has been widespread use of the
Java virtual machine (JVM) as a server platform. Matching
real memory and CPU resources to the time varying
memory-processor demand footprint of applications is an
important element in systems performance management, but
there are issues associated with JVM memory management.

For example, even a single JVM configuration can have
an issue in that the single JVM may take all the allowed
memory (e.g., the heap size limit) but there is no perfor-
mance benefit for such large physical memory consumption.
Additionally, a single JVM may take memory from the OS
but may not need it later when its workload changes. For
configurations involving multiple collocated JVMs, one or
more of the JVMs may take or reserve much more memory
than is necessary.

One existing solution to manage JVM memory assumes
that the JVM workload is instrumented to measure perfor-
mance, but such performance instrumentation is typically
not available and, even if available, the interpretation is
domain specific and it is therefore difficult to devise a
general solution.

Another disadvantage is that existing solutions fail to
provide global optimization of memory resources. Even if
an attempt is made so that each JVM is given enough
memory to avoid a performance drop, severe shortage still
results in swapping of memory. Conventional solutions are
based on how much memory a JVM takes, but a JVM may
not even benefit from additional memory.

Active sharing of processors between applications within
and across virtual machines (VMs) in response to demand is
a mature feature of the operating systems and hypervisors.
Active sharing of memory (ASM) is analogously similar, in
that ASM is a capability where physical memory pages
move seamlessly between applications and across virtual
machines to satisfy demand.

This technique improves system-wide memory utiliza-
tion, or alternatively increases the application density or
workload intensity hosted on a computer system. ASM is
sometimes referred to as “logical memory over-commit”, as
it reduces the total amount of memory necessary in a system
with time varying workloads from the sum of the maximum
demand of each workload to the maximum of the sum of the
workloads.

The ASM technique is, however, distinguished from pag-
ing, which requires saving and restoring state in order to
reuse pages from processes or VMs. Exploiting ASM
requires the ability to identity unused memory in applica-
tions and operating systems and to map or re-map those
pages to collocated applications, or to move them to another
VM on a common hypervisor. This page reassignment is
widely available at the VM-hypervisor layer in the commer-
cial space.

However, support at the application layer has been lag-
ging as traditional application design and coding practice
has not emphasized the need to dynamically return memory
from the process space to the OS.

US 9,459,894 B2

3
SUMMARY OF THE INVENTION

In view of the foregoing, and other, exemplary problems,
drawbacks, and disadvantages of the conventional systems,
it is an exemplary feature of the present invention to provide
a structure (and method) to provide an automatic ASM
solution that exemplarily focuses on Java applications but is
applicable to any application runtime environment (ARE).

It is another exemplary feature of the present invention to
provide a VM memory management mechanism based upon
using JVM metrics to infer workload performance of the
concurrently-operating VMs.

It is another exemplary feature of the present invention to
provide a virtual memory controller that manages memory
as an elastic resource similar to computing cycles for Java
applications.

It is yet another exemplary feature of the present inven-
tion to provide a virtual memory controller that fairly
allocates, among a plurality of collocated VMs, all of the
memory available for allocation for the VMs.

In a first exemplary aspect of the present invention, to
achieve the above features and objects, described herein is
a method including receiving, through an interface of an
application runtime environment (ARE), a first set of inter-
nal operational metrics of the ARE executing at a current
setting S1 on a processor of a computer; determining a first
performance P1 of the ARE at the current setting S1 using
the received first set of internal operation metrics; varying
the current setting S1 of the ARE to a new setting S2;
receiving, through the interface of the ARE, a second set of
internal operational metrics of the ARE executing at the new
setting S2; determining a second performance P2 of the ARE
at the new setting S2 using the received second set of
internal operation metrics; and re-allocating a memory allo-
cation for the ARE based on the determined performances
P1 and P2.

In a second exemplary aspect of the present invention,
also described herein is a method including measuring
continuously a performance P, of each application runtime
environment ARE, of a plurality of AREs currently execut-
ing in a system at current settings S,, each ARE, comprising
a process being executed by a processor on a computer and
having an interface for selectively reporting current values
of a set of internal operational metrics; varying the settings
S,, respectively, for each ARE,, an amount above or below
a target setting T, for each ARE,, to calculate the perfor-
mance P, at the varied setting S, for each ARE;; and re-
allocating memory to the AREs, as based on the perfor-
mance calculations.

In a third exemplary aspect of the present invention, also
described herein is a method including measuring continu-
ously a performance P, of each application runtime environ-
ment ARE, of a plurality of AREs currently executing in a
system at current settings S,, each ARE, comprising a pro-
cess being executed by a processor on a computer and
having an interface for selectively reporting current values
of a set of internal operational metrics; and allocating an
amount of memory for each ARE,, as based on adjusting
settings S, of the AREs, so that a relative performance slope
R, of each ARE, is substantially equal.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other purposes, aspects and advantages
will be better understood from the following detailed
description of a preferred embodiment of the invention with
reference to the drawings, in which:

20

25

30

35

40

45

60

4

FIG. 1 shows an exemplary system view 100 of elastic
memory for explaining the present invention in the exem-
plary context of JVMs;

FIGS. 2(a)-2(e) show exemplary experimental data set
200 of one of the benchmark experiments, that suggested to
the inventors to use allocation rate as the JVM metric to be
used for online operation of a JVM memory controller;

FIG. 3 shows an exemplary architecture 300 of main
components of the memory controller of the present inven-
tion;

FIGS. 4A-4C show snapshots 400 of dithering points as
memory is removed from a JVM;

FIGS. 5A-5F show performance curves 500 that demon-
strate dithering and memory re-balancing when the work-
load intensity of one JVM increases;

FIG. 6 shows data 600 demonstrating the MaxHeapSize
control parameter, including dithering, for two different
collocated workloads;

FIG. 7 shows data 700 demonstrating the allocation rate
metric for collocated workloads, including a step response
of the control system around 580 seconds for an increase in
demand for one of the workloads;

FIGS. 8A-8F show performance curves 800 that demon-
strate dithering and memory re-balancing when the work-
load intensity of one of the collocated JVMs increases;

FIG. 9 shows in flowchart format 900 the concepts
described in the present invention;

FIG. 10 depicts a computer system 1000, such as a cloud
computing node, according to an embodiment of the present
invention;

FIG. 11 depicts a cloud computing environment 1100
according to an embodiment of the present invention; and

FIG. 12 depicts abstraction model layers 1200 according
to an embodiment of the present invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS OF THE INVENTION

Referring now to the drawings, and more particularly to
FIGS. 1-12, an exemplary embodiment involving JVMs will
now be described.

The present inventors have recognized that the wide-
spread use of the JVM as a server application platform opens
an opportunity to extend the scope of ASM into the appli-
cation layer. Emerging JVM technologies such as memory
ballooning and dynamic heap sizing provide mechanisms to
release committed memory from the virtual heap space.
Given these advances, the present inventors considered that
it was an appropriate time to visit the architecture and
control functions required for an automatic ASM solution
for JVMs that focuses on Java applications but would also
be applicable to other Application runtime environments
(AREs).

Accordingly, the present invention introduces a method-
ology and an implementation for actively sizing the real
memory mapped into each JVM during execution. An
important feature of the approach is that the measurement
and the system model that underlie the control system do not
utilize application specific key performance indicators
(KPD).

Instead, internal JVM metrics obtained via the Java Man-
agement Extensions (JMX) interface provide information on
how JVM memory translates into the JVM component of
application performance. The connection between JVM
metrics and application performance will be further
explained in the following discussion.

US 9,459,894 B2

5

Also to be described herein is a control system that uses
these internal JVM metrics to actively apportion memory
between collocated Java applications. When total memory is
constrained, the controller achieves fair sharing of memory
by equalizing the marginal performance value of collocated
JVMs. A dithering technique is applied to overcome chal-
lenges arising from the nonlinear and noisy nature of the
JMX metrics.

A number of experiments, further described in a technical
article scheduled for publication shortly after filing of this
application and incorporated herein by reference, have led
the present inventors to conclude that a JVM’s current
performance can be determined from JVM metrics related to
current memory usage of that JVM and that such calculated
performance can serve as a basis for fairly allocating to a
plurality of concurrently-operating VMs the entirety of the
memory that can be shared among the plurality of VMs.

However, before summarizing results of these experi-
ments in more detail, the following initial brief discussion
provides background and motivation for the approach taken
in the present invention of using internal JVM metrics rather
than conventional methods.

FIG. 1 exemplarily shows a general platform 100 that can
be used to investigate active memory sharing (AMS) in a
virtual environment. From a logical perspective, the figure is
a tree with application JVMs 101-104 at the top, and the
hypervisor memory pool 105 of a physical machine (PM) at
the root. One or more collocated JVMs is hosted by an
operating system (OS). Each OS 106, 107 apportions its
memory pool to processes (JVMs and other applications),
free pools, and system cache.

In turn, the operating systems share the common physical
platform memory 105 indicated by the hypervisor pool. The
concept is that memory flows slowly down the tree to the OS
and hypervisor pools on the non-critical path. This is similar
to background use of the page-out daemon. In contrast, the
flow of memory up the tree is on the critical path, quickly
satisfying response to demand.

The present invention provides a mechanism to actively
move memory between JVM-based applications and the OS
to allow collocated JVMs to effectively share the current OS
memory. As memory is added or removed from the OS, or
one of the workload changes, the control system responds to
fairly apportion the constrained memory.

VM Memory Management

Many conventional logical memory overcommit solutions
are directed at dynamic allocation of memory by the hyper-
visor to the OS layer. For example, one conventional mecha-
nism addresses the memory management under VM Ware
ESX. This mechanism uses copy-on-write for content-based
sharing within a VM and across VMs to reduce memory
demand on a PM. It also uses the “ballooning” technique to
control and re-balance of memory used by VMs.

IBM products also support active memory sharing across
VMs based on both software and firmware features, for
example, on the PowerVM and z/VM systems. To right-size
the VMs, one conventional mechanism used a page sam-
pling technique, whereas another conventional mechanism
used swap space and memory access monitoring, and yet
another conventional mechanism used a memory controller
with feedback information on memory allocation and utili-
zation while maintaining QoS objectives.

Active JVM Memory Management

Two methods are currently available to release unused
heap memory in the JVM to the OS. The JVM balloon
method adds a dynamic link library to the JVM that supports
a Java Native Interface (JNI) call. JVM ballooning is

5

10

15

20

25

30

40

45

55

60

65

6

described elsewhere, for example, in papers that describe the
Ginko system. VMWare’s EM41J is a commercial offering of
the balloon mechanism that can plug into JVM’s from
Oracle and IBM.
Unlike ballooning, the present invention uses direct resiz-
ing of the JVM heap to release memory to the OS. This
technology has been built into the IBM J9 JVM since
version 7.0. A detailed explanation of the method used to
leverage this JVM control knob, MaxHeapSize, to actively
control heap memory, is provided below.
A few recent studies have focused on the application level
memory management in VMs. For example, the Ginkgo
system uses an application-driven memory overcommitment
system. It uses a memory performance model based on
collected application performance and memory size data.
In another mechanism, an application level ballooning
controller is designed in the Xen-based environment. It
included exemplary data on the impact to response time by
varying memory allocations to two applications: the
memory buffer allocated to a database (mySQL) for TCP-H
benchmark, and the heap memory for the XMark XIL.M
benchmark.
In yet another approach, a VM memory management
mechanism used in CRAMM enables dynamically choosing
of JVM heap sizes to meet workload demand, while avoid-
ing latency in paging. Based on empirical results for a set of
applications, it establishes the correlation between heap size
and working set size, and between heap size and application
performance (e.g. elapsed time).
The Approach of the Present Invention
Unlike the approaches used in these prior mechanisms,
the present inventors conducted a number of experiments
that indicated that JVM performance metrics obtained
through JMX correlated with the memory usage of applica-
tion processes and could be used to calculate a proxy for the
VM performance. The JVM metrics used are generic to
many JVMs with a variety of garbage collector (GC) poli-
cies. Therefore, the present invention takes the innovative
approach of using internal JVM metrics as the basis of a
novel JVM memory management mechanism.
Unlike the previous approaches summarized above, the
present invention describes two novel aspects of JVM
memory management:
the use of JVM metrics as application performance indi-
cators, as a proxy for application performance; and

the active sizing of the heaps of collocated JVMs in
response to OS level resource changes and workload
variability, thereby providing a new mechanism for
moving or reallocation of memory between JVMs and
underlying a new control system for JVM memory
management.

JVM Metrics as Proxies for Application Performance

The present inventors focused on using JVM metrics as
proxies for application performance for several reasons.
Most Java processes and applications do not maintain inter-
nal measures of their rate of progress. Of the minority that
do, few expose these performance APIs in a standard format.
Even when made available, the interpretation of the key
performance indicators (KPIs) requires domain-specific
knowledge. For example, transaction processing services
often support a mix of incoming request types that require
varying back-end resources to satisfy. A shift in workload
composition from query requests to updates can change
KPI’s in a way that needs to be understood by a controller
of every application in the system to tune across all appli-
cations and systems.

US 9,459,894 B2

7

End-to-end application performance may depend on addi-
tional factors to that of the JVM. For example, the database
tier may be slowed because of insufficient OS system
buffers. Note, however, that the effect of a slow database tier
on a Java application tier will generally manifest itself in the
JVM metrics, such as rate of object allocation, since the
application cannot make progress. In this example, the local
controller gives the JVM less memory than if the JVM tier
was running at full load. It is reasonable that the unassigned
memory makes its way to the database server via the flow of
FIG. 1. An approach of local independent controllers, such
as the one presented in the present invention, does not
preclude collaboration with controllers at other levels to
achieve global optimization.

JVM Direct Page Releasing Mechanism

The present inventors have recognized that IBM’s J9
JVM contains a memory release mechanism that can be
leveraged for the present invention. When J9 starts, it
reserves a contiguous region of virtual process space for its
heap. The virtual heap is sized by the JVM startup command
line parameter setting —Xmx. The —-Xmx setting is the
MaxHeapSizelLimit and is the largest size the heap can
reach. The J9 JVM maintains a second, soft, heap maximum
setting called the MaxHeapSize whose operation is summa-
rized below.

MaxHeapSize can be set at any time during JVM execu-
tion to a value less than the MaxHeapSizelimit using the
Java Management Extensions (JMX) APIL. The JVM’s
memory manager for balanced garbage collection (GC)
policies actively attempts to maintain contiguous free
regions at the top of the heap’s virtual memory space.
Internally, the memory manager tries to adjust to new
settings of MaxHeapSize as its heap maximum. When the
portion of the virtual heap in use exceeds MaxHeapSize the
memory manager attempts to use compacting GC, and
relocation of its generational regions to fit inside the current
MaxHeapSize.

If the active heap fits under MaxHeapSize, any physical
memory mapped into the virtual heap region from Max-
HeapSize to the top of the virtual heap at MaxHeapSize-
Limit is released to the OS. In this case, MaxHeapSize
becomes the heap limit, and all internal memory manage-
ment algorithms are sized by this value.

When the JVM memory manager cannot reduce the heap
to fit under the MaxHeapSize setting, the heap remains sized
to the last successful setting, and will continue to attempt to
meet the new setting as pattern of application memory
changes.

MaxHeapSizeLimit (read only) and MaxHeapSize (read/
write) are exposed programmatically through the Memory-
Bean of JMX using the getMaxHeapSize(Limit)() and
setMaxHeapSize() methods. They are also available inter-
actively through the Java GUI utility JConsole. These APIs
are used by the controller described below.

Analyzing the JVM Metrics and Application Performance
Relation

A key aspect of the present invention is that decisions
about the effect of JVM memory on the Java component of
the workload can be based on JVM metrics, rather than from
key performance indicators (KPI) provided by workload
instrumentation that is typical of various conventional VM
memory management systems previously described. The
following discussion provides a brief summary of the
experiments and analysis of the correlation between JVM
metrics and the workload performance (e.g., business opera-
tions per second—bops), which serves as the basis for the
present invention. The goal was to understand and possibly

10

15

20

25

30

35

40

45

50

8

utilize the JVM metrics as proxies for the benchmark
performance data, to permit a mechanism to correctly size
the JVM memory for each workload.

Metrics Collected from the JVM

Each JVM metric considered to be potentially of interest
during development of the present invention is listed with
those that proved most useful in evaluating the JVM con-
tribution to application performance at the top of the list.

Mem-freed—The cumulative number of bytes collected
by the garbage collector (GC) since a JVM startup.

Heap-inuse—Current amount of the heap memory con-
taining objects with live references.

Heap-committed (hpCom)—Current memory mapped to
the virtual heap.

GC CPU—The fraction of the system CPU cycles spent
in GC. Since GC may be multithreaded and concurrent
on multiple cores, the GC CPU percent reported is the
sum of the time spent on each of the GC threads
normalized to the wall clock time and the number of
cores. A decrease in GC CPU often provides an indi-
cation of whether adding memory is benefiting the
application.

Collection rate (coll-rate}—The number of GCs reported
by the JVM over the sampling interval. The algorithm
that determines when GC occurs is internal to the JVM.
While it is a black box statistic, it appears in the data
from the inventors’ experiments to be a consistent
indication of memory pressure.

Allocation rate (alloc-rate)—This measure is not directly
reported by JMX but is derived from the inuse-heap
and mem-freed metrics. It is the rate of memory allo-
cated during an interval and is computed in the sample
interval [t1,t2] using the allocated bytes: alloc-rate=
[inuse-heap(t2)-inuse-heap(t1)+memfreed(t2)-mem-
freed(t1)]/[(t2-t1].

This derived allocation rate proved to be a very useful
measure: when an application is slowed, that slowing is
reflected in the allocation rate. The allocation rate was found
to generally be more stable than the mem-freed measure, as
it does not depend on when JMX happens to take a sample
of the JVM metrics. For example, a GC cycle just before or
just after taking a JVM metrics sample will yield a different
memfreed, but the allocated memory will be the same. It is
noted that, over long time intervals, the men-freed and
allocation rate have to be in equilibrium otherwise the JVM
memory is exhausted as would be the case of a memory leak.
This approach or other similar approaches can be used to
derive one or more metrics for memory usage analysis.

Memory Intensive Workload Benchmarks

In the experiments further described in the technical
publication, two benchmark groups were used to establish
the correlation of the JMX metrics and workload perfor-
mance. SPECjvm2008 contains over 20 individual bench-
marks that cover a wide range of applications. Of these, the
10 which used more than 128 MB of committed heap are
considered memory intensive. The excluded set in this group
used less than 50 MB opt committed heap. SPECjbb2005 is
representative of a traditional transactional workload. With
ten warehouses it used up to 2000 MB (2 GB) of memory
and sustained over 1000 MB/sec in allocation rate.

Experimental Procedure

The studies were carried out on an AIX Power 7 virtual-
ized platform. Each virtual machine was allocated two
physical cores with a simultaneous multithreading (SMT)
level of 4, such that the OS and JVM see eight logical
processors.

US 9,459,894 B2

9

Initially, 5 GB was typically assigned to each VM, but
memory allocation could be dynamically varied using the
hypervisor API. The IBM J9 JVM is configured to use the
balanced GC policy described in the present invention. The
balanced policy was selected because it incorporated the
dynamic control of the heap maximum through the Max-
HeapSize system control variable discussed previously. The
benchmarks were profiled over successive runs with the
JVM heap max stepped from 256 MB to 4000 MB.

Results of the Experiments

The correlation between the SPECjvm2008 benchmark
performance and the JVM metrics was explored as a func-
tion of the MaxHeapSize parameter.

These experiments suggested that decisions about the
benefit to the application of additional memory should be
made on the basis of the observed change in memory-related
JVM metrics as memory is added to the JVM, rather than on
the metric values themselves. Consider, for example, the
threshold pattern near the threshold where performance
changes rapidly in FIG. 2(a). Adding memory clearly ben-
efits the application, and this behavior is also seen in the
simultaneous improvement in allocation rate, shown in FIG.
2(d). If the allocation rate does not improve, that failure of
improvement is a strong indication that the extra memory
does not benefit the application.

The present inventors were searching to identify one or
more JVM metrics that would correlate well with the
benchmark performance. After correlating experimental
results, it was determined that the allocation rate would be
the most consistent single indicator of performance.

Active JVM Memory Control

Since memory allocation to JVM (e.g. MaxHeapSize) is
important for the application performance in JVM as work-
load varying, the following discussion describes the design,
development, and testing of a novel JVM memory controller
based on the experimental results described above. The
controller takes actions to re-apportion memory among
collocated JVMs when the available OS memory is con-
strained and workload changes.

Principle of Operation

The memory apportion objective of the JVM memory
controller described herein is to “fair share” the current
available memory between collocated JVMs. The fair shar-
ing condition is defined as: equal changes in the MaxHeap-
Size of each JVM result in equal changes in the relative
performance of each JVM. Thus, the relative performance
slope (S) for each JVM (j) is defined as the slope of the curve
of the application performance (Pj) against MaxHeapSize,
normalized by the performance value:

AP; 1
Si= o X —.
AMaxHeapSzzej P;

The controller of the present invention reallocates
memory by actively setting MaxHeapSize; such that the
relative performance slope S; is the same for all j, using JVM
metrics to measure the application performance Pj. The
discussion above exemplified that allocation rate was deter-
mined as a result of the experimentation as a strong candi-
date for an application performance proxy. This open loop
data were then used to evaluate the JVM metrics in the slope
equalizing algorithm.

This experimental data had the advantage that the SPEC
benchmark performance KPIs were also available to estab-
lish the correct baseline behavior. Therefore, additional

10

25

30

40

50

55

10

testing was used to confirm that the allocation rate metric
produced the closest agreement to the SPEC KPlIs, thereby
further validating the inventor’s initial conclusion to use the
allocation rate metric for the online operation of the con-
troller of the present invention

Controller Architecture

FIG. 3 provides a functional block diagram 300 of the
main elements of the measure-analyze-control cycle that
tracks workload memory demand and actively sets the
MaxHeapSize parameter of each JVM. On the right of the
figure is the data collector 302 which uses JMX to poll the
data from the JVM. The typical polling interval is 5 seconds.

The JVM metrics are fed into the control module 304 on
the left. It consists logically of three parts: the slope evalu-
ator 306; the Compute Next MaxheapSize module 308 that
estimates the next MaxHeapSize value based on the current
state; and the dither function 310.

The controller 304 was written in Java to utilize the
available JMX packages and to leverage a standard internal
JVM feature that detects the presence of collocated JVMs.
The data collector and controllers 304 for all collocated
JVMs 312 in a single lightweight JVM process used less
than 0.1% CPU and 20 MB of memory. The collector and
controller can be integrated into the JVM itself to provide a
scalable and highly available architecture.

Function Details

A key function of the controller 304 of the present
invention is to locate its position on the curve of allocation
rate against the MaxHeapSize parameter at the current
workload. To accomplish this, the controller modulates the
MaxHeapSize parameter about its current target value; this
technique is referred to as “dithering.” A dither point is
selected above and below the target MaxHeapSize. Experi-
ments explored the tradeoff in which moving the dither
points too far away resulted in oscillations in JVM perfor-
mance, while keeping them close yielded a poor control
speed. For example, a reasonable tradeoff is achieved with
the lower point at 80% of the current target MaxHeapSize,
and the upper point at 120%.

FIG. 4 (i.e., FIGS. 4A-4C) illustrates operation of the
collection of data using dithering when running the derby
benchmark as memory is removed from the system. Each
subfigure 4A-4C is a snapshot of the data showing the three
measured allocation rates generated by dithering. The three
dither points are acquired on sequential measurement cycles
about 5 seconds apart. Note that this also means that at any
time the three points do not necessarily lie at 80%, 100%,
and 120% of the target MaxHeapSize as the target may have
changed at each measurement cycle. Consequently, the three
measured dither-points in the curve window may not lie on
a locally convex curve. This situation is improved by relying
more on the latest measurements than on older ones. We first
remove the oldest dither point and construct a single line,
thus making the slopes for performance gain and loss equal.
If even this single line yields a negative slope, we drop the
next oldest point, i.e. we use only the newest dither point and
construct a flat line through it, with slope 0. An example of
this is shown in FIG. 5 (e.g., FIG. 5A-FIG. 5F), where in the
middle left the workload is varying too much, resulting in
the measurements at the time instance shown (FIGS.
5A-5C); in this case a flat line was constructed and used in
the re-balancing algorithm.

The relative slope of the allocation rate—MaxHeapSize
curve, is evaluated using the three points. It is difficult to fit
an analytic function such as an exponential, because the fit
was too sensitive to the jittery nature of the data. This is
especially true in the “plateau” of the curve where the jitter

US 9,459,894 B2

11

over the dither range may exceed the change in the under-
lying performance curve. The jitter is caused by multiple
sources including sampling noise, garbage collection cycles,
and OS activities. The current implementation uses a piece-
wise linear fit, which in essence approximates an arbitrary
function locally, but other fitting techniques are also pos-
sible.

FIG. 4 shows there are critical and noncritical regions of
control. In the critical region, at the bottom 402 of the figure
(e.g., FIG. 4C), the slope is steep indicating the high value
of additional memory to the application. In the noncritical
region at the top 404 of the figure (e.g., FIG. 4A), memory
is not as valuable. Fortunately, the main difficulties caused
by noise and jitter in measuring slope occur in the noncritical
region of controller operation where the slope is low. Here,
the slope measurement is sensitive to system noise in the
data and fitting is employed to reduce the error, as described
below. The slope data are fed into the controller 304 which
computes, in module 308, the subsequent value for the
MaxHeapSize control to the JVM.

Memory Balancing Methodology

The ‘Compute next MaxHeapSize’ module 308 of FIG. 3
computes the next set of target MaxHeapSize values to input
into the JVMs based on the current system state. This
module also detects the presence of existing and new JVMs
through the JMX interface. New JVMs are given a warmup
period of about a minute before being added to the control
loop. At the end of the warmup cycle the JVM is given an
initial MaxHeapSize target of 20% above it observed com-
mitted memory level.

The Compute target MaxHeapSize module 308 executes
the following procedure during each measurement and con-
trol cycle:

1. Check the available OS memory—If memory has been
added or removed to the OS, as shown in FIG. 1, that
memory is apportioned to the JVMs according the principle
of equalizing the slopes.

2. Adjust the target MaxHeapSize—The current algorithm
uses an iterative, greedy procedure to estimate the new set
of HeapSizeMax values that equalize the slopes. At each
step, memory is taken from the JVM with the lowest
slope—and would be least impacted—and moved to the
JVM with the steepest slope. The iterative computation is
ended under either of two conditions: i) for any JVM,
memory is not given past the current upper dither point; and
memory is not taken away past the lower dither point; ii) the
deviation from the equal slope condition across all JVM’s no
longer improves. Limiting the range of the MaxHeapSize
adjustment during each control cycle slows the step
response, but reduces the risk of destabilizing performance.

3. Select the dither points for each JVM—the direction
and value of the dither is chosen for each JVM so that at any
time the sum does not exceed the total available memory.
Each dither point (lower, center, upper) is assigned a “cost
of renewal”, defined as how recent the dither point was
active. The oldest dither points will thus have the lowest
cost, and are assigned to be updated before newer ones. The
global optimal assignment is an exhaustive search of all
possible assignments, choosing the combination with the
lowest total cost that does not exceed the total available
memory. With three dither points per JVM, an exhaustive
search of up to at least 15 JVM’s is not a computational
problem for this exemplary embodiment. FIG. 6 shows the
phase offset 600 between the dithering pattern two located
IVMs.

10

15

20

25

30

35

40

45

50

55

60

65

12

4. Execute the final decisions of how to set MaxHeapSize
for each JVM, by calling the setMaxHeapSize() method on
the IBM implementation of the MemoryMXBean.

Experimental Results

The controller is evaluated using collocated JVMs run-
ning the SPECjvm2008 derby and the SPECjbb2005 trans-
actional benchmarks. FIG. 7 shows the allocation rate 700 of
each benchmark. The total memory constraint for the two
JVMs is 1.5 GB.

For the first 580 seconds the workload is constant, with
the SPECjbb2005 running 10 warehouses. The variability in
the allocation rate in during this period is mostly due to
different phases in the underlying workload and provides an
idea of the short term jitter in the system. At 580 s, the
number of SPECjbb2005 warehouses changes from 10 to
20. This introduces a step like change in demand for
memory. The resulting behavior and time to settle is a key
evaluation of controller performance. There is some oscil-
latory behavior in the application behavior which settles
within an exponential window of about 80 s. Coincident
with the change in allocation rate, the process CPU followed
a similar pattern (not shown in the figure), with about a 13%
shift from Derby to Specjbb2005.

FIG. 6 shows the corresponding control signal of Max-
HeapSize sent to each JVM during the run. The dither signal
is clearly seen imposed on the average MaxHeapSize control
signal. Comparing the strength of the dither to the allocation
rate data of FIG. 7 indicates the dither does not affect the
application performance, as is desired.

FIG. 8 contains more detail 800 about the slope evaluation
function of the controller during this run. The top FIG. 8A
and FIG. 8D show the balanced situation before increasing
the load on SPECjbb2005, the center plots FIG. 8B and FIG.
8E right after increasing the load, and the bottom FIG. 8C
and FIG. 8F show when the rebalance has taken place. It can
be seen that in a balanced situation (top and bottom) the two
curves have a similar slope, while just after increasing the
load on SPECjbb the slope of the SPECjbb curve is then
steeper (FIG. 8E).

As briefly mentioned at the beginning, the present inven-
tion provides a new mechanism that applies more generally
than the specific application of a JVM. FIG. 9 shows in
flowchart format 900 this broader mechanism that can be
applied in any application runtime environment (ARE) that
is defined as meaning any process being executed by a
computer that has an interface to report internal parameter
values for that process. The JVM is, therefore, only one
exemplary ARE for which the present invention applies.
Additionally, in the context of the present invention, there
must be some aspect of this process that can be affected by
changing a value for a predetermined parameter, thereby
providing a mechanism for “setting” the ARE. In the exem-
plary embodiment of the JVM, the parameter used for
making settings for the JVM was maxHeapSize.

Finally, the ARE would have to possess some character-
istic that can be optimized by making changes to its setting
parameter. In the case of the JVM, this optimization was
directed to detecting how performance of the JVM changes
as memory is reallocated to the JVM. It is noted that the
mechanism described in the present invention could be used
for characteristics other than performance of the ARE opera-
tion. For example, the mechanism might be modified for
purpose of detecting how many additional collocated AREs
(e.g., JVMs) could be supported by the underlying hardware.

Accordingly, turning to FIG. 9 and presuming the mecha-
nism is intended for the specific purpose of memory allo-
cation of an ARE, in steps 902 and 904 an ARE is instan-

US 9,459,894 B2

13

tiated and provided an initial memory allocation and the
interface is used to report current values of one or more
internal parameters of interest. In the case of the JVM and
the purpose of memory allocation based on performance, the
internal parameters determined to be of interest were inuse-
heap and mem-freed. It should be noted that, for other
purposes, other internal parameters of the ARE process
might be used.

As described briefly above, in the case of the JVM, the
instantiated ARE process can optionally be operated with an
initial “warmup period” to permit its operation to stabilize
before making changes in its setting parameter, a concept
that is well understood in the art when feedback loops are
implemented.

In step 906, the current parameter values are used to
calculate an aspect of interest of the ARE. Thus, in the JVM
embodiment, the current values of inuse-heap and mem-
freed are used to calculate allocation rate. As should be clear
from the JVM embodiment, additional techniques might be
necessary to detect the ultimate aspect of interest for the
ARE. Thus, for example, the technique of dithering was
used to make changes in settings of the JVM memory
allocation, in order to detect the performance of the JVM as
based on one or more of its internal parameters.

In step 908, the aspect of interest for the ARE is opti-
mized. In the embodiment of the JVM, the aspect of interest
is performance of the ARE as a function of memory allo-
cation. As noted in FIG. 9, the optimization could involve a
feedback loop in which steps 904-908 are continuously
executed.

As also explained by the JVM embodiment, this aspect of
performance for the ARE could involve overall operation of
multiple collocated AREs. Thus, optimization of the perfor-
mance of multiple collocated JVMs involved the procedure
of adjusting the setting of each JVM until approximately the
same performance slopes were achieved for all collocated
JVMs. It should be clear that other optimization procedures
would be appropriate under different scenarios. For
example, optimization of a single JVM could be achieved
differently than optimization of a plurality of collocated
IVMs.

Finally, it is noted that the exemplary embodiment using
collocated JVMs as the AREs was described as having the
memory allocation controller implemented outside the JVM
process itself. However, such configuration should not be
considered as the only possibility, since the memory allo-
cation controller for each JVM could also be incorporated
into the JVM process itself, as long as capability is provided
so that the different JVM controllers could exchange infor-
mation necessary for overall optimization.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention. It is understood in advance that although
the following discussion includes a detailed description on
cloud computing, implementation of the teachings recited
herein are not limited to a cloud computing environment.

Rather, embodiments of the present invention are capable
of being implemented in conjunction with any other type of
computing environment, now known or later developed, that
supports implementation of VMs. Indeed, much of the
following discussion is directed to a more generic comput-
ing environment in which the components are not necessar-
ily implemented on a cloud-based platform.

10

15

20

25

30

35

40

45

50

55

60

65

14

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk,
C++ or the like, and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

US 9,459,894 B2

15

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

Any flowcharts and block diagrams in the figures illus-
trate the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

Turning now the possible hardware implementations that
would support the methods of the present invention, it is
previously noted that the invention could be supported with
most computer architectures, including a cloud-based archi-
tecture. Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

20

25

40

45

16

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer is to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer is to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,

US 9,459,894 B2

17

policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
ized or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment is service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes.

Referring now to FIG. 10, a schematic of an example of
a cloud computing node 1000 is shown. Cloud computing
node 1000 is only one example of a suitable cloud comput-
ing node and is not intended to suggest any limitation as to
the scope of use or functionality of embodiments of the
invention described herein. Regardless, cloud computing
node 1000 is capable of being implemented and/or perform-
ing any of the functionality set forth hereinabove.

In cloud computing node 1000 there is a computer sys-
tem/server 1012, which is operational with numerous other
general purpose or special purpose computing system envi-
ronments or configurations. Examples of well-known com-
puting systems, environments, and/or configurations that
may be suitable for use with computer system/server 1012
include, but are not limited to, personal computer systems,
server computer systems, thin clients, thick clients, hand-
held or laptop devices, multiprocessor systems, micropro-
cessor-based systems, set top boxes, programmable con-
sumer electronics, network PCs, minicomputer systems,
mainframe computer systems, and distributed cloud com-
puting environments that include any of the above systems
or devices, and the like.

Computer system/server 1012 may be described in the
general context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 1012 may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted cloud computing environment, program modules may
be located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 10, computer systeny/server 1012 in
cloud computing node 1000 is shown in the form of a
general-purpose computing device. The components of
computer system/server 1012 may include, but are not
limited to, one or more processors or processing units 1016,
a system memory 1028, and a bus 1018 that couples various
system components including system memory 1028 to pro-
cessor 1016.

Bus 1018 represents one or more of any of several types
of bus structures, including a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and
a processor or local bus using any of a variety of bus
architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA

10

15

20

25

30

35

40

45

50

55

60

65

18
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus.

Computer system/server 1012 typically includes a variety
of computer system readable media. Such media may be any
available media that is accessible by computer system/server
1012, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 1028 can include computer system read-
able media in the form of volatile memory, such as random
access memory (RAM) 1030 and/or cache memory 1032.
Computer system/server 1012 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage
system 1034 can be provided for reading from and writing
to a non-removable, non-volatile magnetic media (not
shown and typically called a “hard drive”). Although not
shown, a magnetic disk drive for reading from and writing
to a removable, non-volatile magnetic disk (e.g., a “floppy
disk™), and an optical disk drive for reading from or writing
to a removable, non-volatile optical disk such as a CD-
ROM, DVD-ROM or other optical media can be provided.
In such instances, each can be connected to bus 1018 by one
or more data media interfaces. As will be further depicted
and described below, memory 1028 may include at least one
program product having a set (e.g., at least one) of program
modules that are configured to carry out the functions of
embodiments of the invention.

Program/utility 1040, having a set (at least one) of pro-
gram modules 1042, may be stored in memory 1028 by way
of example, and not limitation, as well as an operating
system, one or more application programs, other program
modules, and program data. Each of the operating system,
one or more application programs, other program modules,
and program data or some combination thereof, may include
an implementation of a networking environment. Program
modules 1042 generally carry out the functions and/or
methodologies of embodiments of the invention as described
herein.

Computer system/server 1012 may also communicate
with one or more external devices 1014 such as a keyboard,
a pointing device, a display 1024, etc.; one or more devices
that enable a user to interact with computer system/server
1012; and/or any devices (e.g., network card, modem, etc.)
that enable computer system/server 1012 to communicate
with one or more other computing devices. Such commu-
nication can occur via Input/Output (I/O) interfaces 1022.
Still yet, computer system/server 1012 can communicate
with one or more networks such as a local area network
(LAN), a general wide area network (WAN), and/or a public
network (e.g., the Internet) via network adapter 1020. As
depicted, network adapter 1020 communicates with the
other components of computer system/server 1012 via bus
1018. It should be understood that although not shown, other
hardware and/or software components could be used in
conjunction with computer system/server 1012. Examples,
include, but are not limited to: microcode, device drivers,
redundant processing units, external disk drive arrays, RAID
systems, tape drives, and data archival storage systems, etc.

Referring now to FIG. 11, illustrative cloud computing
environment 1100 is depicted. As shown, cloud computing
environment 1100 comprises one or more cloud computing
nodes 1000 with which local computing devices used by
cloud consumers, such as, for example, personal digital
assistant (PDA) or cellular telephone 1154A, desktop com-
puter 1154B, laptop computer 1154C, and/or automobile
computer system 1154N may communicate. Nodes 1000

US 9,459,894 B2

19

may communicate with one another. They may be grouped
(not shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as
described hereinabove, or a combination thereof. This
allows cloud computing environment 1100 to offer infra-
structure, platforms and/or software as services for which a
cloud consumer does not need to maintain resources on a
local computing device. It is understood that the types of
computing devices 1154A-N shown in FIG. 10 are intended
to be illustrative only and that computing nodes 1000 and
cloud computing environment 1100 can communicate with
any type of computerized device over any type of network
and/or network addressable connection (e.g., using a web
browser).

Referring now to FIG. 12, a set of functional abstraction
layers provided by cloud computing environment 1100
(FIG. 11) is shown. It should be understood in advance that
the components, layers, and functions shown in FIG. 12 are
intended to be illustrative only and embodiments of the
invention are not limited thereto.

As depicted, the following layers and corresponding
functions are provided:

Hardware and software layer 1200 includes hardware and
software components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architec-
ture based servers, in one example IBM pSeries® systems;
IBM xSeries® systems; IBM BladeCenter® systems; stor-
age devices; networks and networking components.
Examples of software components include network appli-
cation server software, in one example IBM WebSphere®
application server software; and database software, in one
example IBM DB2® database software. (IBM, zSeries,
pSeries, xSeries, BladeCenter, WebSphere, and DB2 are
trademarks of International Business Machines Corporation
registered in many jurisdictions worldwide).

Virtualization layer 1220 provides an abstraction layer
from which the following examples of virtual entities may
be provided: virtual servers; virtual storage; virtual net-
works, including virtual private networks; virtual applica-
tions and operating systems; and virtual clients.

In one example, management layer 1240 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides iden-
tity verification for cloud consumers and tasks, as well as
protection for data and other resources. User portal provides
access to the cloud computing environment for consumers
and system administrators. Service level management pro-
vides cloud computing resource allocation and management
such that required service levels are met. Service Level
Agreement (SLA) planning and fulfillment provide pre-
arrangement for, and procurement of, cloud computing
resources for which a future requirement is anticipated in
accordance with an SLA.

In the above-described cloud computing environment, the
present invention might involve several of these layers if
implemented in a cloud computing environment. But, the
underlying concept of the present invention, as moving
memory between applications, would show up in the “vir-
tualization layer”, since the present invention is directed to

15

20

25

30

35

40

45

50

55

60

65

20

a form of “memory virtualization”, thus making memory
“virtual” (not to be confused with “virtual memory” in the
traditional sense).

However, as would also be clear to one of ordinary skill
in the art, the present invention could also be implemented
in environments other than the cloud computing environ-
ment, since any machine executing an ARE, could poten-
tially utilize the mechanisms described in the present inven-
tion.

While the invention has been described in terms of a
single preferred embodiment, those skilled in the art will
recognize that the invention can be practiced with modifi-
cation within the spirit and scope of the appended claims. As
previously noted, the present invention provides a new
mechanism for dynamic memory allocation for any appli-
cation runtime environment that has an interface to report
internal parameter values, including environments in both
virtual and non-virtual environments.

Further, it is noted that, Applicants’ intent is to encompass
equivalents of all claim elements, even if amended later
during prosecution.

Having thus described our invention, what we claim as
new and desire to secure by Letters Patent is as follows:

1. a method, comprising:

receiving, by a processor on a computer, through an
interface of an application runtime environment (ARE),
a first set of internal operational metrics of said ARE
executing at a current setting S1;

determining, by said processor, a first performance P1 of
said ARE at the current setting S1 using said received
first set of internal operation metrics;

varying, by said processor, the current setting S1 of said
ARE to a new setting S2;

receiving, by said processor, through the interface of the
ARE, a second set of internal operational metrics of
said ARE executing at the new setting S2;

determining, by said processor, a second performance P2
of said ARE at said new setting S2 using said received
second set of internal operation metrics; and

re-allocating, by said processor, a memory allocation for
said ARE based on the determined performances P1
and P2,

wherein said ARE comprises one of a plurality of collo-
cated AREs and said re-allocating memory allocation
comprises determining a fair share of a total amount of
memory available for all of said plurality of collocated
AREjs, such that said total amount of available memory
is globally optimized over said plurality of collocated
AREs,

wherein a fair share re-allocation of memory comprises
changing a setting of one or more of said collocated
AREs so that all said collocated AREs have a same
relative performance slope S,

wherein determining a performance slope S comprises
calculating a normalized performance P of said ARE by
calculating a performance slope of said ARE at said
two setting values S1 and S2,

wherein said setting of said ARE comprises setting a
value for a largest size of physical memory that can be
allocated to said ARE,

wherein said ARE comprises a virtual machine (VM),
wherein the VM comprises a Java virtual machine
(JVM), wherein said interface comprises a Java Man-
agement Extension (JMX) interface that selectively
provides information on operational aspects of said
JVM, including aspects of a memory status of the JVM,

US 9,459,894 B2

21

wherein said set of internal operational metrics comprise
operational metric values for inuse-heap and for mem-
freed of said JVM, at two different times t; and t, at a
current setting S,

where inuse-heap indicates a current amount of a heap
memory containing objects with live references in said
JVM and mem-freed indicates a cumulative number of
bytes collected by a garbage collection in said JVM
since a startup of said JVM,

wherein said performance P is determined as an allocation
rate calculated as:
alloc-rate=[inuse-heap(#,)—inuse-heap(?, }+mem-freed

(t;)-mem-freed(z,)]/[(&-1))];

wherein said setting comprises a largest size that a heap
of the JVM can reach,

wherein said JVM comprises one of a plurality of collo-
cated JVMs, said method further comprising:

determining a fair share for each said collocated JVM of
a current total available memory for said plurality of
JVMs; and

re-allocating memory allocation between said collocated
JVMs to achieve said fair share by adjusting a setting
as appropriate for each said JVM,

wherein said determining a fair share further comprises
achieving a global optimum for allocating said total
available memory among said plurality of collocated
JVMs, meaning that a total memory MEM, , available
for possible allocation to said plurality of collocated
JVMs (Z,JVM,) is used for said memory re-allocating,
such that:

MEM,,; = Z MEM; |,
i

where MEM, is memory allocated to JVM,, and

each JVM, has a setting that provides a relative performance
slope S, that is substantially the same for all said collocated
JVMs, where said relative performance slope S, for a JVM,,
is calculated:

AP; 1

Y S —
' 7 AMaxHeapSize; * P’

where AP, is a differential performance calculated at two
different settings for said JVM,,

AMaxHeapSize, is a differential in values of a MaxHeap-
Size parameter of said JVM, for said two different
settings, and P, is a performance of said JVM; as
calculated at a current setting.

2. The method of claim 1, wherein said fair share re-
allocation of memory comprises changing a setting of one or
more of said collocated JVMs so that all said collocated
JVMs have a same relative performance slope S,

wherein a performance slope S is calculated as a normal-
ized performance P of the JVM by calculating a per-
formance slope of the VM at the two setting values S1
and S2, and

wherein said setting comprises a largest size that a heap
of the JVM can reach.

3. The method of claim 1, as embodied in a set of
computer-readable instructions tangibly embodied in a non-
transitory storage medium.

4. A method, comprising:

15

20

45

55

22

measuring continuously, using a processor on a computer,
a performance P, of each application mntime environ-
ment ARE, of a plurality of AREs currently executing
in a system at current settings S;;

each said ARE, comprising a process being executed on a
computer in said system and having an interface for
selectively reporting current values of a set of internal
operational metrics;

varying, by said processor, the settings S,, respectively,
for each ARE,, an amount above or below a target
setting T, for each ARE,, to calculate the performance
P, at the varied setting S,, for each ARE,

re-allocating, by said processor, memory to said AREs, as
based on said performance calculations; and

calculating a relative performance slope

o AP 1

for each ARE,, where AS, is a difference in setting values
and AP, is a difference in performance for the different
setting values;
using said calculated relative performance slopes as a
basis for said re-allocating memory to said AREs;
wherein said memory re-allocating is achieved by varying
said settings of said AREs until said relative perfor-
mance slopes are substantially equal for all said AREs.
5. The method of claim 4, as embodied in a set of
computer-readable instructions tangibly embodied in a non-
transitory storage medium.
6. The method of claim 4, wherein said AREs comprise
Java virtual machines (JVMs).
7. A method, comprising:
measuring continuously, by a processor on a computer, a
performance P, of each application runtime environ-
ment ARE,, of a plurality of AREs currently executing
in a system at current settings S,,
each said ARE,, comprising a process being executed on
a computer in said system and having an interface for
selectively reporting current values of a set of internal
operational metrics; and
allocating, by said processor, an amount of memory for
each ARE,, as based on adjusting settings S,, of said
AREgs, so that a relative performance slope R, for each
ARE, is substantially equal,
wherein said AREs comprise Java virtual machines
(JVMs) and said performance P, is determined as an
allocation rate calculated as:

alloc-rate=[inuse-heap(z,)-inuse-heap(z,)+mem-freed
(tp)-mem-freed(z,))/[(1,-11)];

where inuse-heap indicates a current amount of a heap
memory containing objects with live references in a
JVM, and mem-freed indicates a cumulative number of
bytes collected by a garbage collection in said JVM,
since a startup of said JVM,;

wherein said relative performance slope R, of each JVM,
is determined by varying a setting S, respectively for
each JVM,, an amount above or below a target setting
T, for each JVM, to calculate the performance P, at the
varied setting S, for each JVM,;; and wherein the per-
formance R, is calculated:

R AP 1
‘_A_S;*F‘-’

US 9,459,894 B2
23

where AS, is a difference in setting values and AP, is a
difference in performance for the different setting values.

#* #* #* #* #*

24

